Grade 11/12 Math Circles

April 3, 2024
Primality Testing and Integer Factorization - Problem Set

1. Calculate $137 \times 73 \mathrm{mod}$ the following m :
$10,100,1000,10000,100000$.

Solution: We calculate

- $3 \times 7 \equiv 1(\bmod 10)$
- $37 \times 73 \equiv 1(\bmod 100)$
- $137 \times 73 \equiv 1(\bmod 1000)$
- $137 \times 73 \equiv 1(\bmod 10000)$
- $137 \times 73 \equiv 10001(\bmod 100000)$

2. Calculate $2^{35}, 2^{70}, 2^{140}, 2^{280}$, and $2^{560}(\bmod 561)$. Hint: $2^{32}=\left(2^{16}\right)^{2}=\left(\left(2^{8}\right)^{2}\right)^{2}$ and so on. Then you can calculate 2^{35} as $2^{32} \times 8$.

Solution: We calculate

- $2^{16} \equiv\left(2^{8}\right)^{2} \equiv 256^{2} \equiv 460(\bmod 561)$
- $2^{32} \equiv\left(2^{16}\right)^{2} \equiv 460^{2} \equiv 103(\bmod 561)$
- $2^{35} \equiv 8 \times 103 \equiv 263(\bmod 561)$
- $2^{70} \equiv 263^{2} \equiv 166(\bmod 561)$
- $2^{140} \equiv 166^{2} \equiv 67(\bmod 561)$
- $2^{280} \equiv 67^{2} \equiv 1(\bmod 561)$
- $2^{560} \equiv 1^{2} \equiv 1(\bmod 561)$

3. Are 91 and 169 coprime? Are 97 and 99 coprime?

Solution: 91 and 169 are not coprime, as they share the factor 13. 97 and 99 are coprime (in fact 97 is prime, and certainly does not divide 99).
4. Calculate inverses of $1,2,4$, and $14 \bmod 15$. Hint: $14 \equiv-1(\bmod 15)$.

Solution: We always have $1^{-1} \equiv 1 \bmod$ any m. Now notice that $16 \equiv 1(\bmod 15)$. Thus $2^{-1} \equiv 8(\bmod 15)$ and $4^{-1} \equiv 4(\bmod 15)$. Finally, $14^{-1} \equiv(-1)^{-1} \equiv-1 \equiv 14(\bmod 15)$.
5. Calculate $\phi(10), \phi(15)$, and $\phi(17)$.

Solution: The set of a in $\{0,1,2, \ldots, 9\}$ coprime to 10 is

$$
\{1,3,7,9\}
$$

so $\phi(10)=4$. Similarly, we obtain the set

$$
\{1,2,4,7,8,11,13,14\}
$$

for 15 , so $\phi(15)=8$. Since 17 is prime, every a between 1 and 16 inclusive is coprime to it, so $\phi(17)=16$.
6. Calculate $\phi(210), \phi(216)$, and $\phi(257)$. Hint: 257 is prime.

Solution: The prime factorizations are

$$
\begin{aligned}
& 210=2 \times 3 \times 5 \times 7 \\
& 216=2^{3} \times 3^{3} \\
& 257=257
\end{aligned}
$$

We get

$$
\begin{aligned}
& \phi(210)=210 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}=48, \\
& \phi(216)=216 \times \frac{1}{2} \times \frac{2}{3}=72 \\
& \phi(257)=257 \times \frac{256}{257}=256
\end{aligned}
$$

